Active compounds in Chinese herbs and medicinal animal products which promote blood circulation via inhibition of Na+, K+-ATPase.
نویسندگان
چکیده
The therapeutic effect of cardiac glycosides for congestive heart failure lies in their reversible inhibition on Na+, K+-ATPase located in human myocardium. Several steroid-like compounds containing a core structure similar to cardiac glycosides have been found in many Chinese herbs and medicinal animal products conventionally used to promote blood circulation. They are putatively responsible for the therapeutic effect of those medicinal products via the same mechanism of inhibiting Na+, K+-ATPase. Inhibitory potency on Na+, K+-ATPase by ginsenosides, one of the identified steroid-like compounds, is significantly affected by sugar attachment that might cause steric hindrance of their binding to Na+, K+-ATPase. Ginsenosides with sugar moieties attached only to the C-3 position of the steroid-like structure, equivalent to the sugar position in cardiac glycosides, substantially inhibit Na+, K+-ATPase. However, their inhibitory potency is abolished when sugar moieties are linked to the C-6 or C-20 position of the steroid-like structure. In contrast, no appreciable contents of steroid-like compounds are found in danshen, a well-known Chinese herb traditionally regarded as an effective medicine promoting blood circulation. Instead, magnesium lithospermate B (MLB), the major soluble ingredient in danshen, is assumed to be responsible for the therapeutic effect by inhibiting Na+, K+-ATPase in a manner comparable to cardiac glycosides. Neuroprotective effects of cardiac glycosides, ginsenosides and MLB against ischemic stroke were accordingly observed in a cortical brain slice-based assay model. Whether the neuroprotection is also triggered by inhibition of Na+, K+-ATPase remains to be investigated. Molecular modeling suggests that cardiac glycosides, ginsenosides and MLB presumably bind to the same extracellular pocket of the Na+, K+-ATPase alpha subunit.
منابع مشابه
O-10: A Marked Animal-Vegetal Polarity in The Localization of Na+,K+-ATPase Activity and Its Down-Regulation Following Progesterone-Induced Maturation
Background: Polarized cells are key to the process of differentiation. Xenopus oocyte is a polarized cell that has complete blue-print to differentiate 3 germ layers following fertilization, as key determinant molecules (Proteins and RNAs) are asymmetrically localized. The objective of this work was to localize Na+, K+-ATPase activity along animal-vegetal axis of polarized Xenopus oocyte and fo...
متن کاملHerbs and Herbal Supplements, a Novel Nutritional Approach in Animal Nutrition
Livestock are an integral part of the agriculture sector and encompass a great impact on the national economy. An eco-friendly alternative to enhance production, prevent and treat disease conditions of animal is a great challenge for animal nutritionists. Keeping farm animals healthy is necessary to obtain healthy animal products. The use of naturally occurring compounds like herbs, herbal prep...
متن کاملReversal effects of traditional Chinese herbs on multidrug resistance in cancer cells.
Multidrug resistance (MDR) continues to be a major obstacle for successful anticancer therapy. In this work, fractions from 17 clinically used antitumour traditional Chinese medicinal herbs were tested for their potential to restore the sensitivity of MCF-7/ADR and A549/Taxol cells to a known antineoplastic agent. The effects of these fractions were evaluated by MTT method and an assay of the c...
متن کاملAssociation of the whole blood potassium polymorphism with resistant to saline in two sheep breeds of different climates of Iran
Abstract The whole blood potassium concentration has shown the bimodal distribution in sheep, which has been classified into LK and HK types; HK allele is recessive to LK with a single gene inheritance. This polymorphism showed different behavior in different environment, which could be due to adaptation process. This research was conducted on the Zel and kermani breed research station, which...
متن کاملHypoxia-mediated degradation of Na,K-ATPase via mitochondrial reactive oxygen species and the ubiquitin-conjugating system.
We set out to determine whether cellular hypoxia, via mitochondrial reactive oxygen species, promotes Na,K-ATPase degradation via the ubiquitin-conjugating system. Cells exposed to 1.5% O2 had a decrease in Na,K-ATPase activity and oxygen consumption. The total cell pool of alpha1 Na,K-ATPase protein decreased on exposure to 1.5% O2 for 30 hours, whereas the plasma membrane Na,K-ATPase was 50% ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Chang Gung medical journal
دوره 33 2 شماره
صفحات -
تاریخ انتشار 2010